Molecular Mechanisms of ZnO Nanoparticle Dispersion in Solution: Modeling of Surfactant Association, Electrostatic Shielding and Counter Ion Dynamics
نویسندگان
چکیده
Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na+ counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution.
منابع مشابه
Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملThermodynamic investigation of the interaction between Mono-s-chloroTriazinyl MCT Reactive Dyes and cetylpyridinium chloride inaqueous solution
The interactions two synthetic triazinyl reactive dyes Mono-s-chloro Triazinyl reactive dyes DI and DII with the cationic surfactant N-hexadecyl pyridinium chloride CPC were studied using a conductometric method in 25, 30, 35, 40 and 45ºC. The equilibrium constants and other thermodynamic parameters for the ion pair formation were calculated on the basis of a theoretical model using the data ob...
متن کاملStability of Silica Nanoparticle Dispersion in Brine Solution: An Experimental Study
Nanotechnology has various applications in oil and gas industry such as enhanced oil recovery (EOR). The main challenge in using nanoparticles in EOR processes is their stability in harsh conditions such as high temperature, high pressure, and intermediate to high salinity. However, most of the recent experimental works have been performed under unrealistic conditions such as the use of distill...
متن کاملDrag Reduction by Anionic Surfactant Solutions in Gravity Driven Flow System
This paper presents efflux time experiments performed in the absence and presence of aqueous solutions of Drag Reducing Agents (DRAs) when a liquid is emptied from a large open cylindrical storage tank through an exit piping system. The drag reducing agents studied are Dodecyl benzene sulfonate anionic surfactant and a mixed solution of surfactant and sodium chloride counter ion. The variab...
متن کاملRemoval of Nitrate Using Synthetic Nano Composite ZnO/Organoclay: Kinetic and Isotherm Studies
This study was conducted to investigate organoclay prepared using montmorillonite clay with zinc oxide (ZnO) nanoparticles and a long-chain organic surfactant hexadecyltrimethylammonium bromide for the removal of nitrate ion from aqueous solutions. Adsorbents were evaluated by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FT-IR),...
متن کامل